КОНДРАХИНА ИРИНА НИКИФОРОВНА

АНДРОГЕННАЯ АЛОПЕЦИЯ У МУЖЧИН: ЗНАЧЕНИЕ ГЕНЕТИЧЕСКИХ, ГОРМОНАЛЬНЫХ И МЕТАБОЛИЧЕСКИХ ФАКТОРОВ

3.1.23. Дерматовенерология

Автореферат

диссертации на соискание ученой степени доктора медицинских наук

Работа выполнена в Федеральном государственном бюджетном учреждении «Государственный научный центр дерматовенерологии и косметологии» Минздрава России

Научные консультанты:

академик РАН, доктор медицинский наук, профессор

Кубанова Анна Алексеевна

член-корреспондент РАН, доктор медицинских наук, профессор

Кубанов Алексей Алексеевич

Официальные оппоненты:

доктор медицинских наук, профессор, главный научный сотрудник института молекулярной патологии и патоморфологии Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр фундаментальной и трансляционной медицины» Минобрнауки России (Новосибирск)

Криницына Юлия Михайловна

кафедрой профессор, заведующий доктор медицинских наук, бюджетного дерматовенерологии Федерального государственного «Кубанский образовательного образования учреждения высшего государственный медицинский университет» Минздрава России

Тлиш Марина Моссовна

доктор медицинских наук, профессор, заведующий кафедрой Медицинской элементологии медицинского института РУДН

Скальный Анатолий Викторович

Ведущее научное учреждение:

ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)

Защита диссертации состоится «___» _____2022 г. на заседании Диссертационного совета 21.1.007.01(Д 208.115.01) при ФГБУ «ГНЦДК» Минздрава России по адресу: 107076, Москва, ул. Короленко, д.3, корп.6

С диссертацией можно ознакомиться в библиотеке ФГБУ «ГНЦДК» Минздрава России

Автореферат разослан « ____ » ______ 2022 г.

Ученый секретарь

Диссертационного совета,

кандидат медицинских наук

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования

Андрогенная алопеция (код L64 по МКБ-10) является наиболее распространенной формой патологического выпадения волос [Randall V.A., 2010]. Среди представителей европеоидной расы к тридцати годам данное заболевание регистрируется у 30% мужчин, к пятидесяти поражает каждого второго в популяции и, примерно, 80% к семидесяти [G. Severi, R. Sinclair, J.L. Hopper et al., 2003]. По данным российских авторов [Аравийская Е.Р., Михеев Г.Н., Мошкалова И.А., Соколовский Е. В., 2003], в РФ андрогенная алопеция занимает лидирующее положение, в то время как гнездная, рубцовая и другие формы алопеций встречаются значительно реже.

Несмотря на то, что андрогенная алопеция не изменяет показатели трудоспособности, инвалидизации и смертности, данное заболевание существенно ухудшает качество жизни пациентов [Pirastu N, Joshi P.K., deVries P.S. et al., 2017; Rinaldi S., Bussa M., Mascaro A., 2016] что сделало его предметом многочисленных междисциплинарных исследований.

Сформировавшиеся представления о патогенезе андрогенной алопеции связывают возникновение и развитие данного заболевания с двумя ведущими факторами: генетической предрасположенностью и действием андрогенов - мужских половых гормонов [Marcińska M., Pośpiech E., Abidi S. et al., 2015; Lolli F., Pallotti F., Rossi A. et al., 2017]. Кроме того, признается и действие различных эндогенных факторов, связанных с наличием вредных привычек или загрязнением среды обитания [Prie B.E., Iosif L., Tivig I. et al., 2016; Upton J.H., Hannen R.F., Bahta A.W. et al., 2015].

Несмотря на то, что доказана негативная роль повышения уровня мужских половых гормонов (андрогенов), в первую очередь – тестостерона и производного от него дигидротестостерона, образующегося в результате активности фермента 5α–редуктазы [Sánchez P., Serrano-Falcón C., Torres J.M, et al., 2018] в сокращении фазы активного роста волоса (анагена) за счет удлинения фазы регрессии (телогена) и фазы отдыха (катагена), уменьшении числа волосяных фолликулов, их прогрессирующей миниатюризации и, в конечном итоге, в облысении [Lolli F., Pallotti F., Rossi A. et al., 2017], в значительном проценте случаев развитие андрогеннной алопеции возможно и при нормальных значениях гормонального фона [Randall V.A., 2010], что позволяет говорить о значимой роли в развитии этого заболевания целого ряда других негенетических факторов.

Перечень прочих негенетических факторов включает ряд микроэлементов [Jin W., Zheng H., Shan B., Wu Y., 2017] и витаминов [Fawzi M.M., Mahmoud S.B., Ahmed S.F. et al., 2016; Mahmood L., 2014], дефицит

которых оказывает воздействие на трофику придатков кожи и связанную с этим продолжительность стадий телогена и анагена волосяных фолликулов. Дополнительными факторами, значимыми для нормального роста волос, являются гормон инсулин и определяемая им концентрация глюкозы в сыворотке крови [Lie C., Liew C.F., Oon H.H., 2018], а также иные метаболические параметры крови [Chakrabarty S., Hariharan R., Gowda D., Suresh H., 2014].

В целом критический анализ накопленных данных свидетельствует в пользу многофакторности патогенеза андрогенной алопеции. При этом в большинстве цитируемых работ каждый из анализируемых генетических или негенетических факторов анализируется по отдельности, что существенно снижает фундаментальную новизну и практическую значимость получаемых результатов.

Целью работы явилось изучение патогенетических механизмов возникновения и развития андрогенной алопеции у мужчин на основании комплексного учета генетических, гормональных и метаболических факторов с разработкой на данной основе персонализированных подходов к прогнозированию развития и лечению данного заболевания

Основные задачи работы:

- 1. Характеристика клинических форм и стадий андрогенной алопеции у пациентов, обращающихся за специализированной медицинской помощью дерматологического профиля.
- 2. Определение генетических маркеров, содержания гормонов, витаминов и микроэлементов в крови у пациентов с начальными стадиями (I-IV по классификации Норвуд-Гамильтон) андрогенной алопеции, патогенетически значимых для возникновения и прогрессирования данного заболевания.
- 3. Исследование спектра значимых однонуклеотидных генетических полиморфизмов у пациентов с различным уровнем половых гормонов (андрогенов) с построением на данной основе вероятностной модели риска возникновения андрогенной алопеции.
- 4. Анализ показателей витаминного и микроэлементного статуса в возникновении и прогрессировании андрогенной алопеции у пациентов с гипер- и нормоандрогенемией, а также их роли в формировании различных клинических форм и стадий данного заболевания.
- 5. Построение многопараметрической модели развития андрогенной алопеции у мужчин, учитывающей уровень их генетического риска, а также наиболее информативные негенетические факторы.
 - 6. Разработка персонализированных схем терапии андрогенной

алопеции у мужчин с определением информативных предикторов ожидаемой эффективности проводимого лечения.

Научная новизна

Показано, что в возникновение и развитие андрогенной алопеции у мужчин вовлечена совокупность генетических, гормональных и микронутриентных факторов, при этом у значительной доли пациентов патологическая утрата волос происходит без выраженного повышения уровня андрогенов (тестостерона и дигидротестостерона), что свидетельствует о гетерогенности патогенетических механизмов данного заболевания.

Показана однонуклеотидных генетических значимость полиморфизмов rs5919324 (выше AR гена), rs1998076 (в 20р11 локусе), rs929626 (в гене *EBF1*), rs12565727 (в гене *TARDBP*) и rs756853 (в гене HDAC9), как факторов генетического риска развития андрогенной алопеции у мужчин, подтверждающая полигенный ТИП наследования заболевания. Впервые доказано, что каждый из названных полиморфизмов не прогностического имеет самостоятельного значения, выявление предрасположенности возможно только при их совместном использовании с обследуемого Наибольшая учетом гормонального статуса пациента. значимость факторов генетического риска мужской андрогенной алопеции отмечается у лиц с уровнем андрогенов в пределах физиологической нормы.

дифференцированное показателей Впервые выявлено значение микронутриентного статуса в возникновении и развитии андрогенной алопеции, a также В определении андроген-зависимого И андроген-независимого паттернов утраты волос. Показано, что возникновение андрогенной алопеции у пациентов мужского пола происходит на фоне множественного дефицита цинка, меди, магния, селена, витаминов В₁₂, Е, Д и фолиевой кислоты. В свою очередь дальнейшее прогрессирование данного заболевания в андороген-независимой затылочной области определяется интенсивностью дефицита железа, а в андроген-зависимой области обратно связано с нарушением метаболизма меди.

С позиций доказательной медицины идентифицированы эффективные направления персонализированной консервативной терапии андрогенной алопеции при выявляемой моно- или полинутриентной недостаточности. Установлено, что проведение коррекции дефицитов фолиевой кислоты и витамина Е оказывает позитивный, а использования препаратов селена - негативный эффект на результат консервативной терапии начальных стадий данного заболевания. Впервые показано, что исходный сывороточный уровень цинка является информативным предиктором эффективности консервативной терапии андрогенной алопеции.

Практическая значимость

Разработана многопараметрическая модель возникновения и развития андрогенной алопеции, приоритет которой защищен Патентом РФ №2713374 на изобретение «Способ прогнозирования андрогенной алопеции у мужчин».

Для практической реализации данного способа предложен алгоритм, включающий комплексный анализ трихограмм и лабораторное исследование совокупности патогенетически значимых генетических и негенетических факторов с их последующей обработкой в рамках «Программы многопараметрического анализа генетических и негенетических факторов, определяющих возникновение и развитие андрогенной алопеции у мужчин» (Свидетельство о регистрации программы для ЭВМ RU 2020612365).

Использование данного алгоритма позволяет получать максимально подробные представления о клинико-лабораторных соответствиях при определении стадии андрогенной алопеции, выявляет индивидуальные факторы риска возникновения и развития данного заболевания, на основании чего создает возможность персонализации подходов к его консервативной терапии.

Методология и методы исследования

Методология анализа патогенетически факторов значимых возникновения и развития андрогенной алопеции (АА) соответствует формату проспективного когортного открытого сравнительного исследования, предусматривающего формирование основной группы обследования из лиц мужского пола с клинической картиной АА, а также аналогичной ей по половому, возрастному и этническому составу контрольной группы здоровых добровольцев. Анализ эффективности использования фармакологических форм микроэлементов и витаминов при проведении консервативной терапии АА соответствует формату экспериментального проспективного клинического исследования.

Клиническое и инструментальное обследование лиц основной и контрольной групп с анализом показателей трихограмм и фототрихограмм проводилось в соответствии со стандартом первичной медико-санитарной помощи при андрогенной алопеции (утвержден Приказом Минздрава России от 25 марта 2013 года, регистрационный № 27867).

Исследование генетических, гормональных, метаболических и микронутриентных факторов, патогенетически значимых в развитии АА, проводилось с использованием оборудования и диагностических тест-систем, имеющих регистрационные удостоверения на проведение соответствующих видов лабораторных исследований.

Критерием прогностической значимости эффективности проводимого

консервативного лечения АА являлись корреляционные связи динамики исследуемых гормонов, метаболитов и микронутриентов с качественными и количественными характеристиками волосяного покрова в андрогензависимой (лобно-теменной, макушечной) и андрогеннезависимой (затылочной) областях.

Основные положения, выносимые на защиту

- 1. Патогенез андрогенной алопеции у пациентов мужского пола имеет многофакторный характер и более чем в трети случаев не связан с повышением уровня мужских половых гормонов.
- 2. Генетический риск развития андрогенной алопеции у пациентов мужского пола определяется множеством однонуклеотидных полиморфизмов и наиболее значим у лиц с неизмененными значениями гормонального фона.
- 3. Возникновение и прогрессирование андрогенной алопеции у пациентов мужского пола связано с множественным дефицитом микроэлементов и витаминов, имеющих неидентичное значение в подгруппах высокого и низкого генетического риска.
- 4. Интегральный учет патогенетически значимых генетических и негенетических факторов позволяет прогнозировать течение и моделировать эффективность консервативного лечения андрогенной алопеции у пациентов мужского пола.

Внедрение результатов диссертации в практику

Предложенная многофакторная модель патогенеза андрогенной алопеции используется при преподавании на цикле профессиональной переподготовки по профилю «Косметология» Федерального государственного бюджетного учреждения «Государственный научный центр дерматовенерологии и косметологии» Минздрава России.

Разработанный многопараметрический алгоритм обследования пациентов с андрогенной алопецией и поддерживающая его программа для ЭВМ внедрены в практическую работу ГБУЗ НСО «Новосибирский областной клинический кожно-венерологический диспансер».

Предложенный вариант исследования генетических предикторов полиморфизмов генов, влияющих на развитие андрогенной алопеции у пациентов мужского внедрен научные пола, В исследования кожно-венерологического Федерального отделения государственного бюджетного образовательного учреждения образования высшего «Санкт-Петербургский государственный педиатрический медицинский университет Минздрава России».

Схемы клинико-лабораторного обследования пациентов с андрогенной алопецией и основанные на них протоколы персонализированной

консервативной терапии данного заболевания включены в актуализированный вариант клинических рекомендаций по нозологии L 64 Андрогенная алопеция (дети/взрослые), поданных для утверждения в МЗ РФ за №178 (РОДВК, 2022).

Личный вклад автора

Соискателем совместно с научным консультантом сформулирована цель и определены основные задачи диссертационной работы, выбраны необходимые методы исследований. Соискателем самостоятельно проведен анализ российских зарубежных источников И литературы исследования, по результатам которого подготовлен аналитический обзор. Соискателем базе консультативно-диагностического лично на ФГБУ «ГНЦДК» «Здоровые волосы» Минздрава России обследование и лечение всех включенных в исследование пациентов мужского пола с андрогенной алопецией, выполнена обработка результатов трихограмм и фототрихограмм, проанализированы и систематизированы результаты клинических и лабораторных исследований, сформулированы на положения, выносимые защиту, выводы, а также написан диссертации.

Степень достоверности и апробация работы

Достоверность данных, полученных в ходе исследования, обоснованность выводов базируется на достаточном количестве наблюдений, применении современных методов исследования и оборудования, статистического анализа полученного материала с помощью программного пакета STATISTICA 13.0 (StatSoftInc., США) и RStudioforMacOS (версия 1.3.1056) и языка программирования R.

Основные материалы исследования представлены и обсуждены на XV Всероссийском съезде дерматовенерологов и косметологов (г. Москва, 23–26 июня 2015 г), XIX Всероссийском съезде дерматовенерологов и косметологов Москва, июня Юбилейной (Γ. 18 - 212019г.), научно-практической конференции дерматовенерологов и косметологов, посвященной 135-летию основания РОДВК (г. Москва, 24-25 сентября 2020г.), Х конференции дерматовенерологов и косметологов Сибирского федерального округа (г. Новосибирск, 15 кадкон 2020г.), XXIВсероссийском съезде дерматовенерологов и косметологов (г. Москва, 7–10 сентября 2021 г.).

Публикации

По теме диссертации опубликовано 15 научных работ, в том числе 5 статей в рецензируемых журналах, входящих в международные системы научного цитирования *Web of Science* и *Scopus*, а также 5 статей в журналах, рекомендуемых ВАК РФ для публикации результатов диссертационных

исследований. Получен 1 патент РФ на изобретение и 1 свидетельство о регистрации программы для ЭВМ.

Объем и структура диссертации

Работа изложена на 183 страницах машинописного текста и состоит из введения и 8 глав, представляющих обзор литературы, описание материалов и методов исследования, результаты собственных исследований и их обсуждение, выводы, практические рекомендации и список литературы, включающий 26 российских и 318 зарубежных источников. Работа иллюстрирована 15 таблицами и 20 рисунками.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследования

Критерии формирования основной и контрольной групп

Формирование основной группы проводилось из состава пациентов, самостоятельно обратившихся за медицинской помощью в ФГБУ «Государственный научный центр дерматовенерологии и косметологии» (ГНЦДК) Минздрава России с жалобами на потерю волос, а основным критерием их включения в настоящее исследование являлось соответствие диагнозу «Андрогенная алопеция» по МКБ-10: L64. Критериями невключения являлись иные формы аллопеции, а также случаи потери волос как осложнения другого (основного) заболевания.

Критериями включения в состав контрольной группы являлись нормальные показатели трихограммы волосистой части головы, отсутствие (на момент исследования) иных дерматологических заболеваний, отсутствие в анамнезе родителей и близких родственников с клинической картиной алопеции, а также нормальные уровни содержания гормона дигидротестостерона (в интервале 250 - 990 пг/мл крови).

Все лица, включенные в состав основной и контрольной групп, информированное предоставили письменное согласие на участие исследовании. Исследование выполнено в соответствие с этическими 1975 правилами Хельсинской Декларации (https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/) дополнениями 2013 г. Проведение исследования одобрено локальным этическим комитетом ФГБУ «ГНЦДК» Минздрава России (протокол №7 от 31 октября 2017 года), согласно которому оно соответствует стандартам добросовестной клинической практики и доказательной медицины.

Принципиальный дизайн исследования представлен на Рисунке 1.

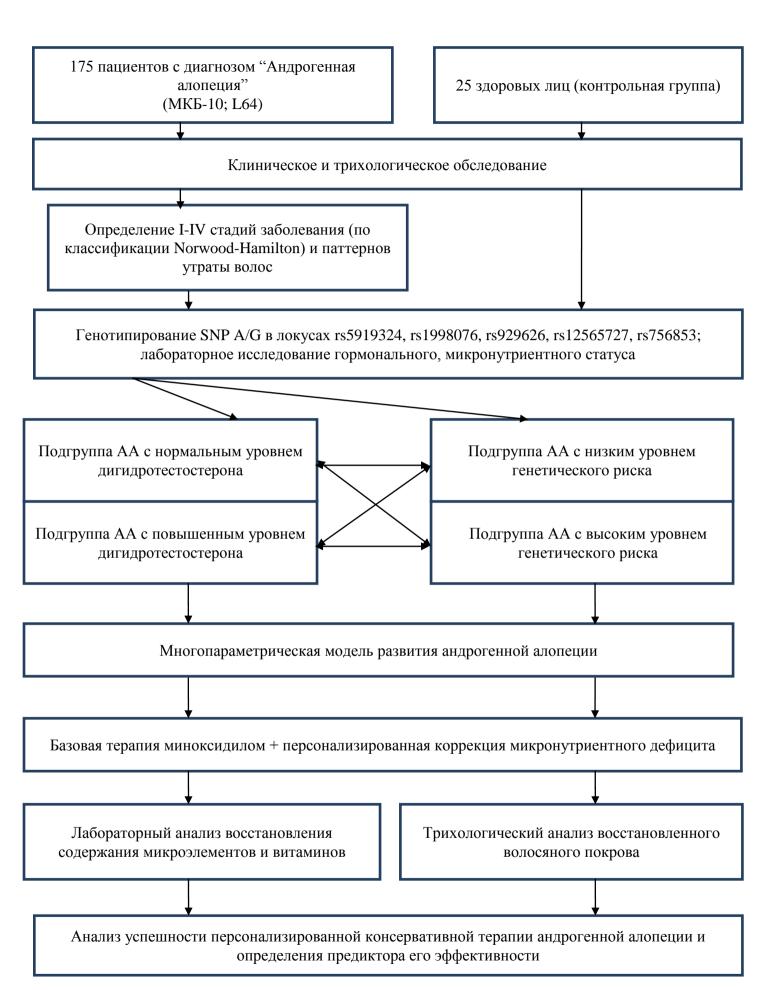


Рисунок 1. Дизайн исследования

Методы клинического и трихологического обследования

В клиническое обследование входили сбор жалоб и осмотр кожи волосистой части головы, оценка видимого изменения качества волос и паттернов их утраты.

Оценка характеристик количественных волосяного покрова проводилась с использованием микрокамеры Aramo SG (Aram HUVIS Co. обработкой Республика Корея), c последующей изображений профессиональной компьютерной диагностической программой Trichoscience PRO v. 1.4 (Россия). При помощи объектива ×60 на участках cm^2 определялось количество 0.1 ± 0.004 волос В андрогензависимой (теменной) и андрогеннезависимой (затылочной) зонах. Измерение диаметра стержней волос проводилось с помощью объектива ×200.

Перед проведением фототрихограммы выполнялось подбривание волос на длину 0,2-0,3 мм на участках площадью 8-10 мм² в теменной и затылочной зонах, после чего через 48 ч на них наносился красящий состав IgoraBonacrom черного цвета (Schwartzkopf, Германия). После 10-минутной спиртосодержащим экспозиции краситель смывался средством, прокрашенные участки анализировались с помощью объектива ×60. Подсчет количества волос на 1 см² осуществлялся автоматически. Постановка диагноза АА осуществлялась на основании Международной классификации болезней 10-го пересмотра (МКБ-10), раздел № 64, введенной в действие на территории РФ с 01.01.1999. приказ Министерства здравоохранения Российской Федерации №170. Стадии АА были определены в соответствии международно признаваемой классификацией Norwood-Hamilton.

Методы лабораторных исследований

Для анализа генетических и негенетических факторов, потенциально значимых для возникновения и развития АА, у лиц основной и контрольной групп из кубитальной вены, натощак, в покое, в утренние часы (с 8.30 до 10.00) производился забор периферической крови в вакуумные пробирки Vacuette K3 с ЭДТА (GreinerBio-One, Австрия). Плазму крови отделяли центрифугированием при 3000 g в течение 10 минут на центрифуге «Allegra X-14» (ВесктапСоulter, США), после чего использовали для анализа гормонов, метаболитов, витаминов и микроэлементов. Из лейкоцитарной массы с использованием набора «QIAmpgenomic DNA minikit» (QIAGEN, Германия) выделяли геномную ДНК, в дальнейшем используемую для проведения геномных исследований.

Определение уровней общего и свободного тестостерона, дигидротестостерона, 17-ОН-прогестерона, дегидроэпиандростенона, глобулина, связывающего половые гормоны (ГСПГ), тиреотропного гормона

и инсулина в плазме крови проводили методом иммуноферментного анализа при помощи микропланшетного фотометра MultiscanAscent (ThermoScientific, США) с использованием наборов реагентов производства DRG InstrumentsGMbH (Германия).

Концентрацию макро- и микроэлементов (Mg, Ca, Zn, Cu, Fe), а также железосвязывающего белка ферритина в плазме крови оценивали с помощью прямых колориметрических тестов с использованием биохимического анализатора KONELAB 20XTi (ThermoScientific, США) и соответствующих реагентов, кальциевого микрообъемного электрода наборов (ThermoScientific, США) для Са. Уровень ферритина определяли набором 22934 (BioSystemsS.A., Испания). Определение уровней меди базировалось на 3.5-DiBr-PAESA [4-(3.5-дибромо-2-пиридилазо)-N-этил-Nреакции (3-сульфопропил)-анилин]; 5-Br-PAPS цинка реакции c [(5-бромо-2-пиридилазо)-5-(N-пропил-N-сульфо-пропиламино) фенол]; использованием голубого ксилидила-1; магния кальция крезолфталеинкомплексоновым методом (Sentinel, Италия); железа – в В И цетилтриметиламмоний реакции хромазуролом бромидом (BioSystemsS.A., Испания).

Для лабораторного контроля качества данных исследований использовались сертифицированные стандартные образцы сыворотки крови человека (ClinChemControl 1, №16150, ClinChemControl 2, №16250; Sentinel, Италия). Уровень Se плазме крови определяли методом атомно-абсорбционной спектрометрии на платформе AA-7000 (Shimadzu, Япония) в соответствии с инструкцией производителя и с использованием сертифицированного стандартного образца сыворотки крови человека (SeronormTraceElements, SerumLevel 1, 0903106; SeroAS, Норвегия).

Концентрация витаминов B_{12} , D (в форме 25(OH)-D3), E и фолиевой кислоты определена методами иммуноферментного и иммунолюминесцентного анализа, а также высокоэффективной жидкостной хроматографии с масс-спектрометрией на платформе EVOQ TQ MS (BrukerDaltonicsGmbH, Germany).

Концентрации глюкозы и холестерола в плазме крови определены на биохимическом анализаторе KONELAB 20XTi (ThermoScientific, США) с использованием наборов реагентов «GOD» и «GHOD-PAP» производства АО «ДиаС» (Россия).

Исследование однонуклетотидных полиморфизмов (англ. – single nucleotide polymorphism, SNP) A/G в локусах rs5919324, rs1998076, rs929626, rs12565727 и rs756853 проведено методом минисеквенирования. Первичные данные, полученные на генетическом анализаторе «ABI 3130 GeneticAnalyser»

(AppliedBiosystems, США) после проведения мультиплексной ПЦР с использованием набора SNaPshot, обрабатывали при помощи программного обеспечения GeneMapper v. 4.0 (AppliedBiosystems, США).

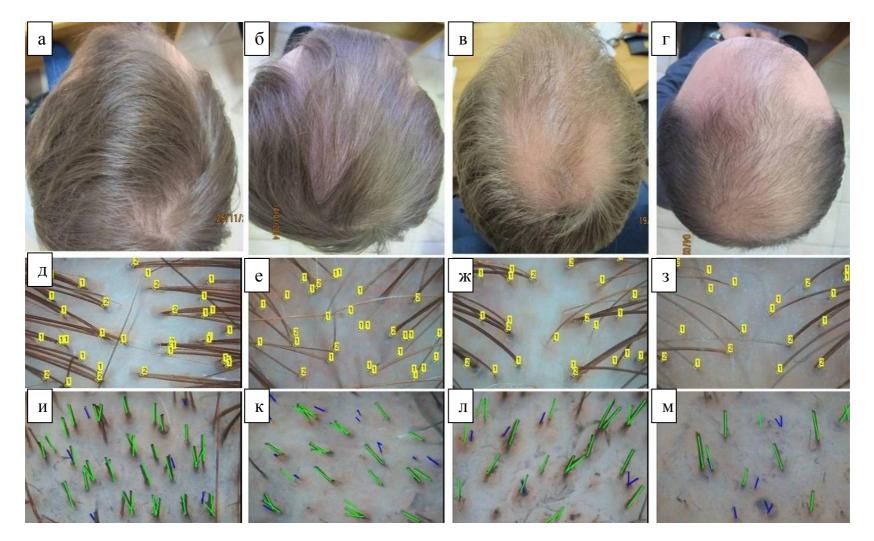
Методы консервативной терапии андрогенной алопеции

Базовая консервативная терапия АА осуществлялась с использованием 5% раствора миноксидила (местно, 2 раза в день). Персонализированная коррекция выявленного при первичном обследовании микроэлементного и витаминного дефицитов осуществлялась в течение 2-х месяцев доступными фармакологическими формами, содержащими: цинка сульфат 124 мг (1 таб. 2 раза в день, после еды); хелат меди 400 мг (1 таб. в день, после еды); селен 50 мкг (1 таб. 2 раза в день, после еды); железо ІІІ гидроксид полимальтозат 357 мг (1 таб. в день, после еды); магния оротатадигидрат 500 мг (1 таб. 2 раза в день, после еды); колекальцферол (витамин Д3) — по 5000 МЕ 1 раз в день; фолиевая кислота 5мг (1 таб. в день, после еды); витамин Е 400 мг 1 раз в день, после еды; витамин В₁₂ — 1 мг в/м через день N10.

Результативность консервативной терапии AA оценивалась косвенным критерием (по изменению содержания микроэлементов или витаминов в плазме крови) и прямым критерием (по изменению количественных характеристик волосяного покрова).

Методы статистического анализа

Полученные обрабатывали данные cпомощью программы STATISTICA 13.0 (StatSoftInc., США), а также языка программирования R и RStudio для MacOS (версия 1.3.1056). Погрупповое сравнение данных выполнено с помощью U-критерия Манна-Уитни для двух групп, а также критерий Краскела-Уоллиса с последующим апостериорным тестом Данна на множественность сравнений при сравнении более двух групп. Для оценки достоверности различий показателей трихограммы до и после проведения консервативной терапии использовался критерий Уилкоксона для парных сравнений. Различия между группами считали статистически значимыми при p < 0.05. генетических факторов анализа возникновения использовались искусственные нейронные сети, организованные по принципу «многослойного перцептрона» (англ. – multilayer perceptron; MLP). При многопараметрическом исследовании патогенетически значимых факторов развития АА использован алгоритм линейного дискриминантного анализа. При определении прогностической значимости отдельных лабораторных параметров рассчитывались положительные И отрицательные прогностические значения, а также интегральный показатель значимости. Силу ассоциаций оценивали в значениях показателя OR (odds ratio – отношение шансов).


Результаты исследований

Клиническая характеристика пациентов с андрогенной алопецией

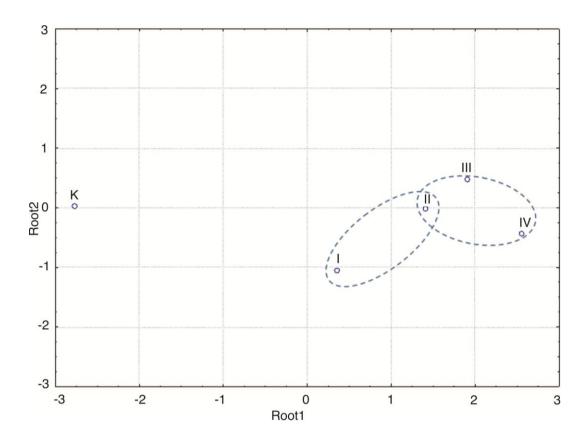
Основная группа обследуемых включала 175 мужчин с клинически верифицированным диагнозом «Андрогенная алопеция». Возраст пациентов с АА на момент обследования варьировал от 18 до 55 (26,2±5,3) лет. Длительность заболевания составляла от 1 года до 5 лет со средней продолжительностью 3,2±1,1 года. У пациентов с АА предъявляемыми жалобами являлись: усиленное выпадение волос (100%) и их истончение (68%), усиление салоотделения кожи волосистой части головы (75%), зуд (33%), болезненность у корней волос (34%).

При осмотре регистрировалось выпадение волос вдоль лобной линии роста волос (I стадия по классификации Norwood-Hamilton), образование двусторонних лобно-височных залысин и поредение волос в теменной или макушечной областях (II стадия), прогрессирующее разрежение волос в лобной и теменной зонах (III стадия) вплоть до полного слияния очагов облысения (IV стадия). По результатам проведенного клинического обследования, I и II стадии АА диагностированы у 81 (46%), III стадия — у 57 (33%), IV — у 37 (21%) пациентов. Примеры стадий и паттернов утраты волос представлены на Рисунке 2 (а-г).

объективном исследовании cанализом трихограмм И фототрихограмм у пациентов с АА в сравнении с контрольной группой были выявлены множественные статистически значимые отличия по количеству волос, их диаметру, доли волос на стадиях анагена/телогена. В частности. наблюдалось выраженное снижение среднего диаметра волос – на 30% (p<0.001) в лобно-теменной области и на 10% (p<0.001) в затылочной области. Констатировано уменьшение плотности волос в лобно-теменной области на 37% (p<0.001) и в затылочной области на 21% (p<0.001) по сравнению с контролем. Доля волос в фазе анагена у лиц с АА была снижена на 27% в лобно-теменной области (p<0.001) и на 10% в затылочной области p<0.001) по сравнению с контролем, а в фазе телогена – возрастала в 7,5 раз (p<0.001) и в 11 раз (р<0.001), соответственно. Типичные примеры трихограмм и фототрихограмм, соответствующих определенным стадиям АА, представлены на Рисунке 2 (д-м); их количественная характеристика в сравнении с контрольной группой приведена в Таблице 1.

Рисунок 2. Примеры паттернов утраты волос (а-г), результатов анализа трихограмм (д-з) и фототрихограмм (и-м) теменной зоны у пациентов с I (а,д,и), II (б,е,к), III (в,ж,л) и IV (г,з,м) стадиями андрогенной алопеции по классификации Norwood-Hamilton.

В ряду трихограмм – количество волос на 1 кв. см: 246 (д), 216 (е), 174 (ж), 150 (3) при норме 300-350.В ряду фототрихограмм – доля волос, находящихся в фазе телогена (%): 16,2 (и), 23,1 (к), 35,3 (л), 41,2 (м) при норме 10%.


Таблица 1 Показатели трихограмм и фототрихограмм у пациентов основной (андрогенная алопеция) и контрольной групп (данные представлены в виде медианных значений (в скобках указан диапазон 25-го и 75-го процентиля)

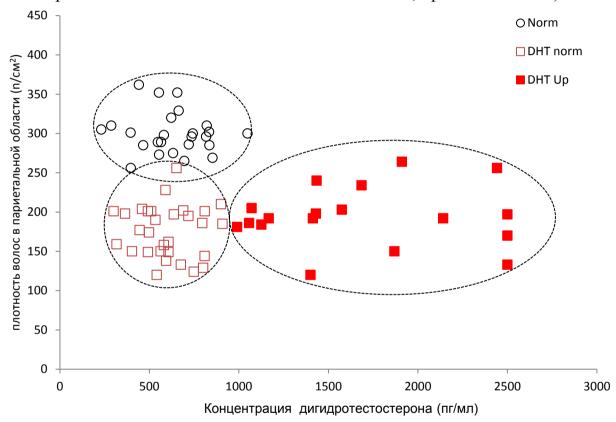
Зона	Анализируемый параметр	Контрольная	Пациенты с	
		группа (n=25)	AA (n=175)	
Андроген-	Плотность волос [число волос	298 (285-310)	188 (150-201)*	
зависимая	на см ²]			
(лобно-	Диаметр волос [мкм]	60 (58-61)	42 (39.5-44.5)*	
теменная	Доля волос в фазе анагена, %	96 (93-99)	70 (60-80)*	
область)	Доля волос в фазе телогена, %	4 (1-7)	30 (21-40)*	
Андроген-	Плотность волос [число волос	320 (315-350)	252 (207-264)*	
независимая	на см ²]			
(затылочная)	Диаметр волос [мкм]	62 (61-63)	56 (54 -58)*	
область	Доля волос в фазе анагена, %	99 (96-100)	89 (81-95)*	
	Доля волос в фазе телогена, %	1 (0-4)	11 (5-18.6)*	
*различия достоверны по сравнению с контролем (р<0.001)				

В то же время сравнение трихограмм и фототрихограмм пациентов с АА, демонстрируя общую тенденцию изменений от I к IV стадии (по классификации Норвуд-Гамильтон), не позволяло указать строгие пороговые значения каждого из анализируемых параметров, по которым можно четко классифицировать стадию развития данного заболевания. Одновременно в качестве наиболее значимого дискриминирующего количественного параметра трихограммы был определен диаметр волос, а фототрихограммы – доля волос в фазе анагена, вносящие наибольший вклад в различение стадий АА. Построенная на данной основе модель корректно отражала стадийность заболевания, но не обнаруживала существенных статистически значимых различий между I и II, а также III и IV стадиями AA (Рисунок 3), что при работы целесообразным выполнении следующих этапов делало ИХ объединение в одну группу.

Проведенный факторный анализ полученных трихограмм и фототрихограмм с выделением главных компонент позволил определить основные параметры, характеризующие паттерны утраты волос в андрогензависимой (лобно-теменной) и андрогеннезависимой (затылочной) областях. При этом наиболее высокие значения факторных нагрузок были установлены для параметра «доля волос в фазе телогена» (0,88; 0,89), а также

обратно коррелирующего с ним параметра «доля волос в фазе анагена» (-0,88; -0,89) в соответствующих областях. Коэффициенты корреляции >0,8 указывают на их высокую информативность, что является основанием их преимущественного использования в оценке трихограмм.

Рисунок 3. Модель значимости показателей трихограмм и фототрихограмм в определении стадии развития андрогенной алопеции (обозначения на рис.: I; II; IV – стадии AA)


В завершение данного этапа работы для последующего углубленного поиска генетических и негенетических факторов, значимых в возникновении и развитии АА, из состава основной группы методом случайной выборки была выделена группа из 50 пациентов с АА, возрастная, этническая и клиническая характеристика которых полностью воспроизводила параметры основной группы.

Характеристика андрогенного статуса у пациентов с андрогенной алопецией

Традиционно важная роль в развитии AA приписывается андрогенным гормонам, действующим непосредственно в волосяном фолликуле и подавляющим рост волос на скальпе, но стимулирующим рост бороды, что известно как "андрогенный парадокс". С другой стороны известно, что заболеваемость AA увеличивается с возрастом, т.е. на фоне снижения уровня

половых гормонов. Компромиссной точкой зрения являются представления о андроген-зависимом и андроген-независимом паттернах утраты волос с различной значимостью гормональных факторов.

С учетом уровня ДГТ все пациенты с АА были разделены на подгруппы с повышенным (n=19) и нормальным (n=31) содержанием этого гормона. Анализ трихологических характеристик волосяного покрова показал статистически значимое изменение количественных характеристик волосяного покрова в подгруппах с повышенным и нормальным уровнем ДГТ в сравнении с группой контроля, причем в теменной области они были более выраженными по сравнению с затылочной (снижение плотности и среднего диаметра волос составило 37 и 30% соответственно, против 21 и 10%).

Рисунок 4. Корреляция между плотностью волос в затылочной области (n/cм²) и уровнем ДГТ (пг/мл). Три кластеры обведены кружками и обозначают три группы: Norm - контрольная группа; DHT norm - подгруппа АА с с нормальным уровнем ДТС; DHT Up - подгруппа АА с повышенным уровнем ДГТ.

При этом статистически значимых отличий между подгруппами по исследуемым параметрам трихограмм обнаружено не было. Более того, корреляционный анализ также не выявил значимых отличий между уровнем ДГТ и количественными показателями трихограмм, что хорошо проиллюстрировано на рис. 4.

Характеристика генетических факторов риска развития андрогенной алопеции у лиц с различным андрогенным статусом

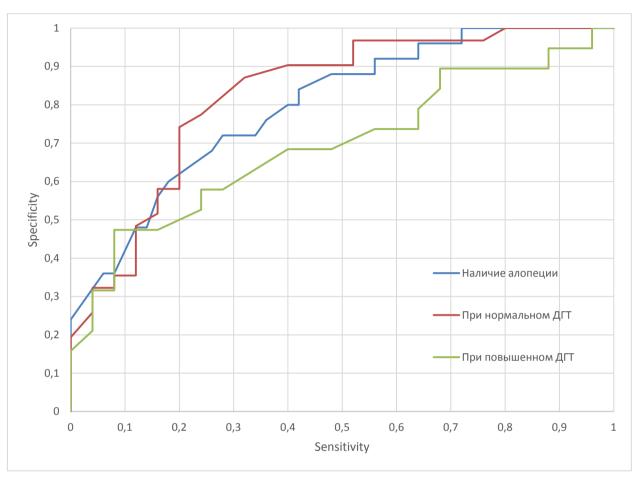

Результаты исследование SNP A/G в локусах rs5919324, rs1998076, rs929626, rs12565727 и rs756853 представлены в табл. 2. Сравнение частот их встречаемости в группе пациентов с AA относительно контрольной группы показал существование аллелей риска (G), хотя ни один из исследованных SNP в отдельности не позволял достоверно дифференцировать названные группы (p>0,05). Для интегрального анализа результатов генетического исследования была задействована технология искусственных нейронных сетей, широко используемых для поиска ассоциаций и построения моделей прогнозирования некоторых заболеваний, в том числе полигенной природы.

Таблица 2 Распределение генетических полиморфизмов, потенциально значимых для развития андрогенной алопеции

Сравниваемые группы	Выявляемые Частота встречаемости в участках ге				генома	
	генотипы и аллельные варианты	rs12565727	rs756853	rs929626	rs1998076	rs5919324
Здоровые доноры (n=25)	A/A	0,64	0,36	0,32	0,24	0,88
	G/A	0,32	0,56	0,64	0,4	0,04
	G/G	0,04	0,08	0,04	0,36	0,08
	Аллель G	0,2	0,36	0,36	0,56	0,1
Пациенты с андрогенной	A/A	0,62	0,34	0,24	0,16	0,88
алопецией	G/A	0,32	0,48	0,48	0,5	0
(n=50)	G/G	0,06	0,18	0,28	0,34	0,12
	Аллель G	0,22	0,42	0,52	0,59	0,12
Вероятность совпадения распределений генотипов в сравниваемых группах (тест Фишера)		0,93	0,5	0,05	0,62	0,32

Для оценки прогностической способности применяемых нейронных сетей был применен метод кривых ROC (от англ. - receiver operating characteristic) - позволяющий оценить точность предсказаний модели. При ROC-кривой полная площадь ПОД данной является ЭТОМ статистическим показателем, представляющим собой вероятность правильного прогноза в отношении исследуемого состояния, в данном случае - вероятность развития AA. Количественную интерпретацию ROC даёт показатель площади под ROC-кривой - AUC (от англ. - area under ROC curve),

ROC-кривой ограниченная осью ДОЛИ **ХИНЖО**П положительных классификаций. Построенная на основе многослойного перцепетрона прогностическая модель возникновения AA показала наилучшую дифференцирующую эффективность (ROC) в случае алгоритма MLP-14-6-2 (рис. 5).

Рисунок 5. Характеристики моделей прогнозов, построенных с использованием автоматизированной нейронной сети Statistica: то есть кривые ROC-анализа для исследуемых групп

Следует отметить, что каждый из сравниваемых SNP в модели прогнозирования АА по отдельности показал низкую прогностическую ценность. При этом анализ SNP всех 5-ти исследованных rs5919324, rs1998076, rs929626, rs12565727 И rs756853 использованием \mathbf{c} многовариативной логистической регрессии позволил достичь AUC 0,8, что практически, соответствовало аналогичному показателю в исследовании Marcińska M. et al. (2015). Более того, разделение группы AA на две подгруппы в соответствии с уровнями ДТС привело к увеличению значения AUC модели прогнозирования на основе нейросети до 0,85 в случае нормального уровня ДГТ, тогда как AUC в случае лиц с AA с повышенным уровнем ДГТ, было существенно ниже даже уровня общей группы (рис. 5), что свидетельствовало

о высокой прогностической значимости данной модели именно в отношении лиц с AA с нормоанрогенемией и сниженной прогностической значимости у лиц с повышенным уровнем ДГТ.

Характеристика микронутриентного статуса у пациентов с андрогенной алопецией с различным андрогенным статусом

продолжение исследований негенетических факторов проведено попарное сопоставление содержания микроэлементов и витаминов в крови общей группы пациентов с АА, подгруппах с нормальным и повышенным уровнем ДГТ и контрольной группы (табл. 3). Это позволило показать, что, во-первых, пациенты с АА имели более высокие уровни ДГТ, в среднем на 22,1% (р=0,029), по сравнению с контролем, во-вторых, пациенты с АА, независимо от уровня ДГТ, характеризуются множественным дефицитом микроэлементов и витаминов в сравнении с группой здоровых лиц. Так содержание цинка было снижено на 21,4% (р=0,003), меди на 42,1% (p<0.001), магния на 10% (p=0.005), селена на 30% (p=0.0024), витамина B_{12} на 15,5% (р=0,012), витамина Д на 53,3% (р<0,001). На этом фоне достоверных различий по определенным микроэлементам и витаминам между группами с нормальным и высоким уровнями ДГТ у лиц с АА выявлено не было. Единственным исключением являлось значимое различие уровней фолиевой кислоты, которое не только в целом было снижено у пациентов с АА, но и было более выраженным у пациентов с повышенным уровнем ДГТ (66%, p=0.034), против (39%, p=0.047) в подгруппе с нормальным уровнем ДГТ по сравнению с контролем. По содержанию Са, Fe и ферритина сравниваемые группы и подгруппы не различались, как между собой, так и от контроля.

Исследование взаимосвязи между количественными показателями трихограмм и содержанием микроэлементов и витаминов в крови пациентов с АА показало, что на фоне выраженных качественных различий по содержанию Zn, Mg, Se, витаминов B₁₂, E, D и ФК между контрольной группой и пациентами с АА, ни один их этих микронутриентов не показал связи выраженностью процесса утраты волос, оцененного количественным показателям трихограммы соответствующего И прогрессированию AA от I к IV стадиям по шкале Норвуд-Гамильтон.

В противоположность этому незначимые при дифференцировке лиц с АА и контроля параметры метаболизма железа (Fe и его переносчик – ферритин) продемонстрировали положительную корреляционную взаимосвязь с некоторыми количественными параметрами трихограммы. Так, при анализе взаимосвязи параметров трихограммы в гормоннечувствительной (затылочной) области была выявлена положительная корреляция между «количество волос – Fe» (r=0.36; p<0.05) (рис 6A) и «диаметр волос

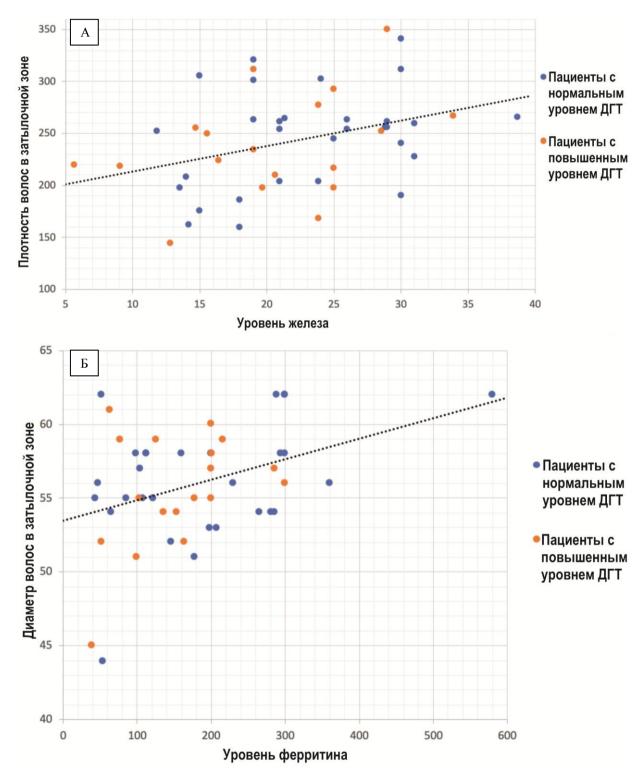

-ферритин» (r=0.39; p<0.05) (рис 6Б) у всех пациентов с АА. При этом оба параметра метаболизма железа положительно коррелировали между собой (r=0.37; p<0.05) и, дополнительно, с содержанием фолиевой кислоты (r=0.40; p<0.05) и (r=0.32, p<0.05), соответственно.

Таблица 3
Показатели содержания микроэлементов и витаминов в крови пациентов с АА с повышенным и нормальным уровнем ДГТ (данные представлены в виде медианных значений (в скобках указан диапазон 25-го и 75-го процентиля)

		Андрогенная алопеция			
	1/	Общая группа	Подгруппа с	Подгруппа с	
Параметры	Контроль	(n=50)	нормальным	повышенным	
	(n=25)		уровнем ДГТ	уровнем ДГТ	
			(n=31)	(n=19)	
Дигидротестостерон,	632,2	771,7	589,9	1575	
пг/мл	(547,1 - 742,5)	$(541 - 1413,4)^a$	(491,7 - 718)	(1166,7 - 2347) ^{cd}	
	14	11	11,5	10,6	
Zn, мкмоль/л	(12 - 15)	$(9 - 14)^a$	(9 - 14) ^b	(9 - 13,9) ^c	
	19	11	10,2	11,5	
Си, мкмоль/л	(17 - 20)	$(9,9 - 13,3)^a$	$(9,3-13)^{b}$	$(10 - 13,4)^{c}$	
	1	0,9	0,8	0,9	
Mg, ммоль/л	(0,9 - 1)	$(0.8 - 1)^a$	$(0,7-1)^{b}$	$(0.8 - 1)^{c}$	
	2,4	2,4	2,3	2,4	
Са, ммоль/л	(2,3 - 2,5)	(2,3-2,5)	(2,3-2,4)	$(2,4-2,5)^{\text{cd}}$	
	26	21,4	22,7	20,6	
Fe, мкмоль/л	(19 - 28)	(18 - 28,6)	(18 - 29)	(15,5 - 25)	
	198	160	168,5	153	
Ferretin, нг/мл	(125 - 265)	(98 - 230)	(98 - 285)	(76,9 - 200)	
	1	0,7	0,7	0,6	
Se, мкмоль/л	(0,9 - 1)	$(0,5-1)^a$	$(0,6-1)^{b}$	$(0,5-1)^{c}$	
	369	312	315	294	
Витамин B_{12} , $\pi r/m\pi$	(290 - 741)	(199 - 403) ^a	(200 - 403) ^b	(165 - 409) ^c	
	9	5,4	6,5	4,2	
Витамин Е, мкг/мл	(8 - 13)	(4 - 10,5) ^a	(4,9 - 11) ^b	(4 - 10) ^c	
	45	21	20,5	24	
Витамин D, нг/мл	(35 - 59)	(19 - 35) ^a	$(18 - 32)^{b}$	(19 - 37,8) ^c	
Фолиевая кислота,	10	4,7	6,1	3,4	
нг/мл	(9 - 12)	(3 - 9) ^a	(3 - 11) ^b	(3 - 6) ^{cd}	

Примечание: a-p<0,05 при сравнении группы наблюдения и контрольной группы; b-p<0,05 при сравнении подгруппы пациентов с AA с низким уровнем ДГТ и контрольной группы; c-p<0,05 при сравнении подгруппы пациентов с AA с высоким уровнем ДГТ и контрольной группы; d-p<0,05 при сравнении подгруппы пациентов с AA с высоким и низким уровнем ДГТ.

Это косвенно указывало на более высокую значимость описанного эффекта в подгруппе с нормальным содержанием ДГТ, поскольку существовала отрицательная корреляция — между ФК и уровнем ДГТ (r=-0.43, p<0.05), соответствующая двум подгруппам, описанным в таблице 3.

Рисунок 6. Зависимость между уровнем железа и плотностью волос (A), уровнем ферритина и диаметром волос (Б) в затылочной зоне

При этом зависимость показателей трихограммы от содержания Fe и ферритина была статистически значима в обеих подгруппах пациентов с алопецией независимо от уровня ДГТ, что указывает на универсальную роль Fe и ферритина на рост волос в затылочной области.

В свою очередь, в андрогензависимой лобно-теменной области некоторые характеристики трихограммы (в первую очередь – диаметр волос) демонстрировали взаимосвязь с содержанием в крови Си. Интересно, что во всей анализируемой выборке зависимость между содержанием Си и диаметром волос являлась положительной (r = 0,44): больше меди – толще волосы. В случае же AA эта зависимость инвертировалась и становилась отрицательной (r = -0,39; p<0,05), т.е. больше меди – тоньше волосы, а наиболее выражена эта инверсия была у пациентов с повышенным уровнем ДГТ (r = -0,65; p<0,05) при также отрицательном, но менее значимом коэффициенте в подгруппе AA с нормальным уровнем ДГТ (r = -0,29).

Данный факт, а также то, что, несмотря на различные уровни ДГТ, степень алопеции не различалась между подгруппами, позволяет говорить о наличии более сложных механизмов развития данного состояния и существенной роли негормональных факторов.

Интегральная оценка значимости генетических и негенетических факторов в возникновении и развитии андрогенной алопеции

Для оценки генетического риска возникновения и развития АА была использована двухэтапная модель с использованием нейросети (для генетических факторов) и пошагового линейного дискриминантного анализа (для негенетических факторов). Генетическое исследование однонуклеотидных полиморфизмов А/G в локусах гs5919324, rs1998076, rs929626, rs12565727 и rs756853 с последующим сравнением частоты их встречаемости в группе пациентов с АА относительно контрольной группы показал существование аллелей риска (G), хотя ни один из исследованных однонуклеотидных полиморфизмов в отдельности не позволял достоверно дифференцировать названные группы (р>0,05). Для интегрального анализа результатов генетического исследования была задействована технология

искусственных нейронных сетей, среди которых наилучшую дифференцирующую эффективность показал алгоритм MLP-14-6-2, как было уже показано выше. Использование подобного подхода позволило объяснить возникновение андрогенетической алопеции у 47 из 50 обследованных пациентов, что характеризовало чувствительность предложенной модели величиной 94,0%. При этом значения критерия «уровни доверия» для отдельных индивидуальных прогнозов имели биноминальное распределение в диапазоне от 0,51 до 1,0, что свидетельствовало об объективном присутствии в группе андрогенной алопеции двух равновеликих подгрупп по 25 пациентов в каждой с низким (≤ 0.75) и высоким (> 0.75) генетическим риском возникновения этого заболевания. Ограничениями предложенной модели (44,0%),низкая специфичность оказались относительно приводящая точность к значению 77,3%, а также невозможность интегральную дифференциации ранних и выраженных стадий андрогенной алопеции по классификации Норвуд-Гамильтон.

В соответствии с полученными результатами, последующий анализ негенетических факторов, потенциально значимых в патогенезе андрогенной алопеции, был проведен как в общей группе наблюдения (n=50), так и в подгруппах с низким (n=25) и высоким (n=25) уровнем генетического риска развития данного заболевания. При этом если в группе пациентов с АА относительно контрольной группы наблюдалось статистически значимое повышение концентрации ДГТ (p=0,029) и 17-ОН-прогестерона (p=0,022), при разделении пациентов на подгруппы высокого и низкого генетического риска развития AA, подобная картина сохранялась только в подгруппе «низкий уровень генетического риска» (p=0,021 и p=0,012, соответственно), в то время как показатели гормонального статуса в подгруппе высокого генетического риска и контрольной группе оказывались статистически незначимыми (p>0,05). Следует отметить, что показанное ранее значимое снижение по сравнению с контролем в крови лиц с AA уровней Mg, Cu и Se сохранялось и при дифференцировке на подгруппы высокого и низкого генетического риска. При этом характерный для общей группы пациентов с алопецией дефицит Zn оказался значим только в подгруппе с низким уровнем генетического риска. Витаминный статус пациентов с АА характеризовался дефицитом D, E и фолиевой кислоты, подтверждаемым при анализе групп и подгрупп, в то время как достоверное снижение содержания витамина В₁₂ было показано только в объединенной группе и подгруппе высокого генетического риска.

Выявленные факторы были использованы для построения многопараметрической модели возникновения и развития АА, основанной на учете значимых негенетических параметров в подгруппах с разной степенью

Таблица 4 Значения нормирующих коэффициентов и констант, используемых в многопараметрической модели андрогенной алопеции

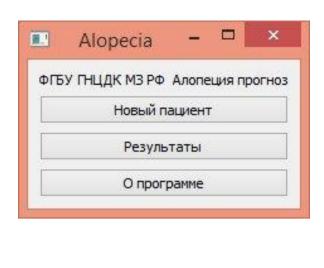
Учитываемые параметры	Дифференцируемые состояния				
	Отсутствие	Ранние стадии	Выраженные		
	алопеции (A_0)	алопеции (А _{І-ІІ})	стадии алопеции		
			(A_{III-IV})		
При низком генетическом риске развития заболевания					
Фолиевая кислота (а1)	2,431	1,6448	1,7859		
Cu (a ₂)	1,2013	0,7911	0,9532		
$Mg(a_3)$	97,479	82,2709	86,5415		
Поправочная константа (b)	-70,4829	-44,8113	-52,2931		
При высоком генетическом риске развития заболевания					
Витамин D (a ₁)	0,3063	0,1775	0,1644		
Cu (a ₂)	2,1684	1,2912	1,7636		
Поправочная константа (b)	-27,5057	-10,4727	-17,245		

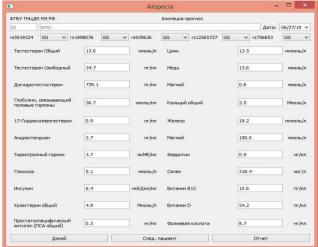
При этом в рамках линейного дискриминантного анализа был осуществлен дополнительный анализ сопряженности негенетических факторов с пошаговым отбором наиболее информативных параметров. Проведение подобной процедуры в подгруппе генетического риска позволило сократить количество учитываемых факторов с 10 до 3, сохранив в качестве параметров с наибольшей дискриминирующей значимостью содержание в плазме крови ФК, а также двух микроэлементов: Мд и Си (p<0,001). В свою очередь среди 8 параметров, отличающих подгруппу пациентов с высоким генетическим риском развития АА от контрольной группы, наибольшая дискриминирующая значимость была констатирована для Си и витамина D (p<0,001). Разработанная на этой основе система классификационных уравнений (отдельно для случаев низкого и высокого генетического риска) имела общий вид:

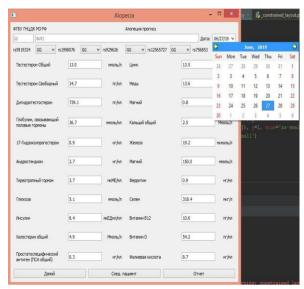
$$A_x = a_1(F_1) + ... + a_n(F_n) + b,$$

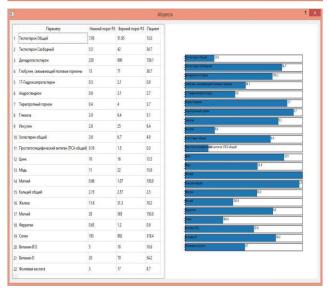
где A_x – классификационное решение; F_1 - F_N – лабораторно определенные значения отобранных негенетических параметров; а₁-а_n- коэффициенты, характеризующие вклад каждого из них в дискриминации подгрупп; b поправочная константа (табл.4). Рассчитываемое с их использованием значение классификационной функции максимальное указывало принадлежность К определенной группе (подгруппе) наблюдения, соответствующей отсутствию андрогенной алопеции (A_0) , ранним (A_{I-II}) или выраженным (А_{ш-ту}) стадиям данного заболевания. Важным результатом

предложенной многопараметрической использования модели правильная классификация всех контрольных случаев, что свидетельствовало 100% специфичности подобного анализа. Использование модели в подгруппе низкого генетического риска позволило правильно классифицировать 81,2% случаев с ранними (І-ІІ) стадиями андрогенной алопеции при 14,3% правильных заключений в отношении выраженных (III-IV) стадий данного заболевания. Аналогичные значения в группе высокого генетического риска составили 87,5% и 16,7%, соответственно. В целом же интегральная точность разработанной модели характеризовалась значениями 81,2% в подгруппе пациентов низкого генетического риска и 85,1% в подгруппе высокого генетического риска развития андрогенной алопеции.


Полученные результаты позволили развить представления о многофакторности патогенеза AA, возникающей при сочетании генетической предрасположенности, гормональных изменений и микронутриентных нарушений. Показанная неидентичность перечня негенетических факторов, действующих у пациентов с низким и высоким уровнем генетического риска данного заболевания, безусловно, свидетельствует в пользу вариативности патогенетических путей, ведущих к патологической утрате волос.


Тем самым полученные результаты подтвердили взгляд на AA как заболевание, возникающее только при суперпозиции факторов генетического риска и реализующих его негенетических (средовых) факторов.

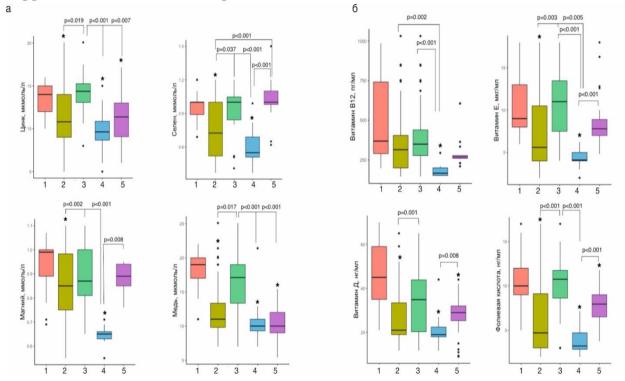

Для комплексного учета и интерпретации результатов исследования основных генетических и негенетических факторов, значимых в возникновении и развитии АА у мужчин была разработана программа: «Многопараметрический анализ генетических и негенетических факторов, определяющих возникновение и развитие андрогенной алопеции у мужчин».


Программа позволяет вводить индивидуальные данные, включающие однонуклеотидные полиморфизмы в наиболее информативных участках генома и результаты лабораторного исследования гормонального фона, метаболических маркеров, витаминного и микроэлементного статуса. В результате анализа с использованием нейросетевого модуля определяется генетический риск возникновения АА, а следующий за ним модуль дискриминантного анализа по выборочной совокупности негенетических параметров, информативных при различных степенях генетического риска, позволяет рассчитать ожидаемую стадию АА у конкретного пациента.

Алгоритм работы программы проиллюстрирован на рисунке 7.

Рисунок 7. Скриншоты алгоритмов работы программы ««Многопараметрический анализ генетических и негенетических факторов, определяющих возникновение и развитие андрогенной алопеции у мужчин».

Следует отметить, что разработанная в процессе исследования двухэтапная многопараметрическая модель возникновения AA имела высокий уровень соответствия текущему статусу пациента, что позволило на её основе разработать и применить схему персонализированной терапии андрогенной алопеции, учитывающую первоначально выявленный дефицит витаминов и микроэлементов.


Оценка эффективности персонализированной консервативной терапии лиц с андрогенной алопецией

Положительный эффект топического применения миноксидила (2, 4-пиримидинодиамин-6-(1-пиперидинил)-3-оксид) известен довольно давно, однако дополнение стандартной терапии исследованиями и коррекцией уровней микроэлементов и витаминов конкретного пациента происходят не всегда. Чаще используют стандартные схемы препаратов, независимо от

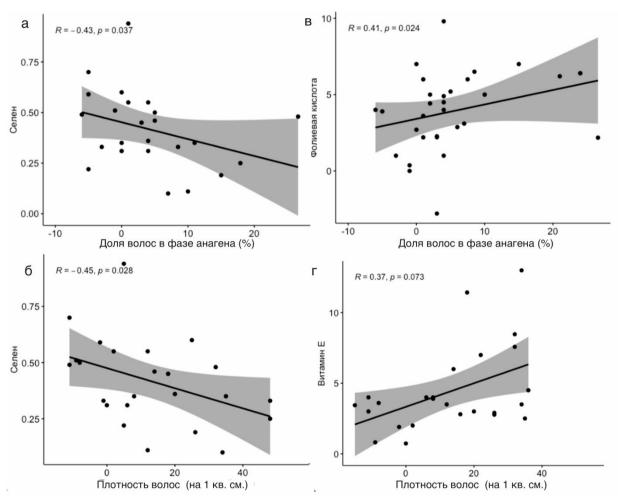
текущего микронутриентного статуса.

При выполнении данного фрагмента исследования были использованы клинические и лабораторные данные 48 пациентов, ранее включенных в группу углубленного исследования (2 пациента в процессе проведения исследования выбыли по объективным причинам).

С учетом результатов лабораторного исследования о наличии моно-или полимикронутриентного дефицита у 46 из 48 пациентов с АА (95,8%): дефицит Си выявлен у 33 (68,8%), Zn- у 28 (58,3%), Se- у 25 (52,1%), Mg- у 10 (20,8%), Fe- у 5 (10,4%); витамина D –у 32 (66,7%); ФК –у 30 (62,5%); витамина E - у 25 (52,1%); витамина B_{12} – у 15 (31,3%), в дополнение к 5% раствору миноксидила местно были включены фармакологические формы микроэлементов и витаминов, направленные на персонализированную коррекцию выявленных дефицитов.

Рисунок 8. Количественное содержание микроэлементов (а) и витаминов (б) в плазме крови пациентов с АА и контрольной группы до и после проведения персонализированной коррекции выявленных микронутриентных дефицитов.

Обозначения: 1 — контрольная группа; 2 — пациенты с AA (общая группа); 3 — пациенты с AA без признака дефицита определенного микронутриента; 4 — группа пациентов с AA с дефицитом определенного микронутриента до начала персонализированной терапии; 5 - группа пациентов с AA с дефицитом определенного микронутриента после завершения персонализированной терапии. Указаны статистически значимые различия (р) между подгруппами пациентов с AA; * - достоверность отличия от контрольной группы (р<0,05).


Исход консервативной терапии АА оценивался косвенным критерием (по изменению содержания микроэлементов или витаминов в плазме крови) и прямым критерием (по изменению количественных характеристик волосяного покрова). Косвенным результатом применения фармакологических форм при проведении консервативной терапии АА стало микроэлементов статистически значимое повышение содержания в плазме крови Se (на 82% от исходного уровня; p=0.001), Fe (на 78%; p=0.001), Mg (на 31%; p=0.008) и Zn (на 18,3%; р=0,001). При этом уровень контрольной группы был достигнут в отношении Se, Fe и Mg (Рис. 8a). В то же время проведенная коррекция дефицита Си не сопровождалась значимым изменением уровня названного микроэлемента в плазме крови. Коррекция витаминного статуса также сопровождалась статистически значимым повышением содержания в плазме крови витаминов D, E и фолиевой кислоты (на 53%, 89,3%, и 147%, соответственно). При этом достичь уровня контрольной группы у пациентов с АА удалось только в отношении витамина Е и В₁₂ (Рис. 8б). При этом, несмотря на 62% повышение уровня витамина B_{12} после коррекции, оно было статистически не значимым.

Сопоставление различий (Δ) содержания анализируемых микронутриентов в плазме крови пациентов с AA до и после завершения персонализированной консервативной терапии и достигнутых у них количественных изменений трихограмм позволило установить существование единичных статистически значимых взаимосвязей (рис. 9).

Наиболее выраженный вклад в восстановление волосяного покрова вносило повышение уровня фолиевой кислоты: Δ данного витамина в плазме крови положительно коррелировала с увеличением доли волос в фазе анагена (r=0,41; p=0,024). Другой положительный коэффициент корреляции связывал Δ витамина E с достигаемым увеличением плотности волос (r=0,37), достоверность которого находилась возле порога статистической значимости (p=0,073). На этом фоне обращала на себя внимание статистически значимая отрицательная корреляция между Δ Se и изменением доли волос в фазе анагена (r=-0,43; p=0,037), сопровождаемая существованием отрицательной корреляции (r= -0,45; p=0,028) между Δ Se и изменением плотности волос, что, в совокупности, характеризовало терапевтический эффект от применения названного микроэлемента как негативный.

Таким образом, с позиций доказательной медицины показана необходимость персонализированного подхода к коррекции выявляемых дефицитов микроэлементов (Mg, Zn, Cu, Se, Fe) и витаминов (B_{12} , D, E, фолиевая кислота) у пациентов с AA. При этом системное применение фармакологических форм микроэлементов в большинстве случаев позволяет

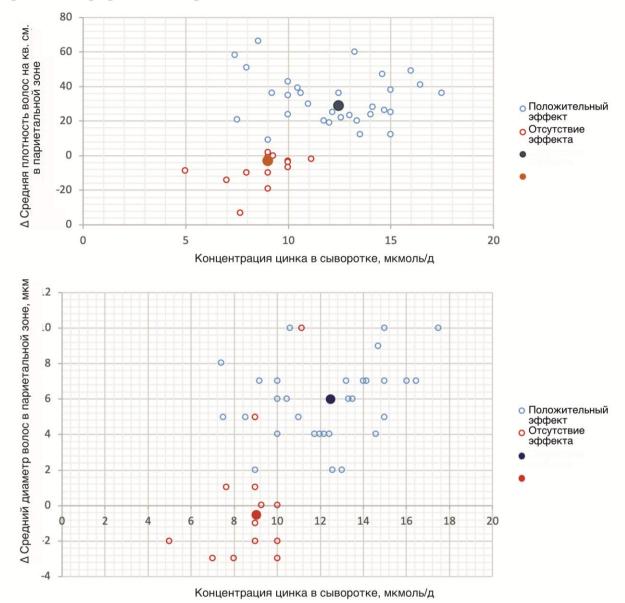

ликвидировать соответствующие дефициты (Se, Mg и Fe), однако в отношении некоторых из них процесс восстановления идет недостаточно активно (Zn) или оказывается неэффективным (Cu).

Рисунок 9. Корреляционные зависимости, связывающие изменения доли волос в фазе анагена (a, b) и плотности волос (б, r) после проведения персонализированной консервативной терапии AA с достигнутым повышением содержания в плазме крови фолиевой кислоты (b), витамина E(r) и $Se(a, \delta)$.

В завершение анализа было проведено погрупповое сравнение исходных микронутриентных параметров сыворотки крови между группами пациентов с положительным эффектом («+») и отсутствием эффекта («-») терапии. Из всех исследуемых микронутриентов (Zn, Cu, Mg, Ca, Fe, Se, B₁₂, E, D, Φ K) статистически значимые различия между подгруппами были выявлены только для Zn. Сопоставление исходно определенного уровня Zn и последующих изменений трихограммы показало наиболее значимые изменения вновь в лобно-теменной области, где уровень Zn статистически значимо коррелировал с последующим изменением (Δ) плотности волос у всех

пациентов с AA (r=0.290, p<0.05) и в группе «-» (p=0.51, r<0.05) и Δ диаметра волос (r=0.403, p=0.06) у всех пациентов с AA. Выявленные зависимости проиллюстрированы на рис.10.

Рисунок 10. Сывороточный уровень Zn в сравнении с Δ плотности волос (A) и Δ среднего диаметра волос в париетальной области.

Примечание: • • - центроиды

Полученные результаты позволили говорить о возможной прогностической значимости цинка в оценке восприимчивости пациентов с АА к проводимой консервативной терапии. При этом наилучшее разделение подгрупп с «-» эффект терапии по сравнению с подгруппой «+» эффект достигалось при установлении пограничной концентрации Zn в10 мкмоль/л. С использованием порога \leq 10 мкмоль/л для «-» эффекта и >10 мкмоль/л для «+» эффекта были рассчитаны позитивный и негативный прогноз проводимой

терапии, составившие 88% и 55%, соответственно. Рассчитанный с учетом этих показателей интегральный показатель значимости Zn в прогнозе эффективности или неэффективности проводимой консервативной терапии составил 72,3%.

Для анализа возможных механизмов влияния Zn на восстановление волосяного покрова был проведен корреляционный анализ взаимосвязи исходного уровня микроэлементов и витаминов в подгруппах с их динамикой после проведенного лечения. Было выявлено наличие отрицательной корреляции между исходным уровнем цинка и Δ селена (r=-0.762, p<0.05) в подгруппе «-» эффект и общей группе AA (r=-0.436, p<0.05), при этом в подгруппе «+» эффект значимой корреляции между исходным уровнем микроэлементов и их динамикой обнаружено не было.

взаимосвязи Zn Анализ исходного уровня c динамикой микронутриентных показателей позволил выявить, что, во-первых, как в общей группе AA, так и группах «+» эффект и «-»эффект исходный уровень Zn у лиц, у которых возникла необходимость в коррекции Se, был существенно ниже уровня контроля (14,0 (12,0–15,0) мкмоль/л) и составлял $9.2\ (9.0-10.0)\ (\downarrow 34\%),\ 9.6\ (9.0-13.0)\ (\downarrow 31\%)$ и $9.0\ (9.0-10.0)\ (\downarrow 36\%)$ мкмоль/л соответственно. Следовательно, более низкий уровень Zn у лиц с AA может свидетельствовать о возможном сочетанном дефиците Se. Bo-вторых, исходно высокое содержание Zn в плазме крови лиц с AA сопровождалось более выраженным приростом витамина E (r=-0,299).

После коррекции выявленного пониженного уровня Zn у пациентов с AA после 4-х месяцев консервативной терапии его сывороточный уровень в группах «+» эффект и «-» эффект практически не отличался (11,56 и 11,34 мкмоль/л, соответственно). Выявленный в нашем исследовании факт выравнивания уровня Zn в группах «+» эффект и «-» эффекта по завершении консервативного лечения, свидетельствует прежде всего о прогностической значимости исходного уровня Zn в отношении эффективности проводимой консервативной терапии, но никак не о его решающей роли в реализации позитивного эффекта лечения.

Таким образом, продемонстрирован полиэтиологический характер себя мужской AA, включающей В генетические, гормональные, метаболические и микронутриентные параметры, степень и особенности корреляции которых индивидуальны, что позволило, с одной стороны, разработать алгоритм прогноза возникновения данного заболевания, а с другой стороны – коррегируя выявленные отклонения в микронутриентном проводить высокоэффективную личностно ориентированную терапию с предсказанием её эффективности.

ВЫВОДЫ

- Среди пациентов, обратившихся за амбулаторной помощью в консультативно-диагностической центр «Здоровые волосы» ФГБУ «ГНЦДК» Минздрава России, наибольшую долю (68 %) составляют мужчины с умеренно выраженными клиническими начальными проявлениями андрогенной алопеции (L64 по МКБ-10), соответствующими I-IV стадиям заболевания ПО классификации Норвуд-Гамильтон. Наиболее регистрируемым (64,3%) является лобно-теменной андроген-зависимый долю паттерн утраты волос, то время как на затылочного андроген-независимого паттерна приходится 35,7 % от общего количества выявляемых случаев андрогенной алопеции.
- 2. У пациентов с начальными стадиями андрогенной алопеции (I-IV классификации Норвуд-Гамильтон) ПО патогенетически значимыми заболевания развития являются генетическая предрасположенность, множественный дефицит микронутриентов, а также метаболические изменения. В 61,25 % случаев заболевание протекает при повышенном содержании мужских половых гормонов, в то время как у 38,75 % пациентов андрогенная алопеция не связана с изменениями гормонального фона.
- 3. Однонуклеотидные генетических полиморфизмы rs5919324, rs1998076, rs929626, rs12565727 и rs756853 значимы в оценке генетического риска возникновения андрогенной алопеции. Более высокая значимость анализируемых факторов генетического риска наблюдается при нормальном уровне мужских половых гормонов (андрогенов).
- 4. В возникновении и развитии андрогенной алопеции значимую роль играют моно- и полидефицит микроэлементов (Zn, Cu, Mg, Se) и витаминов (B₁₂, E, D, фолиевая кислота). Прогрессирование заболевания в андроген-независимой затылочной области связано с нарушением метаболизм железа (Fe и ферритин), в то время как паттерн утраты волос в андроген-зависимой лобно-теменной области демонстрирует обратную зависимость от содержания Cu, наиболее выраженную у пациентов с повышенным уровнем дигидротестостерона.
- 5. Разработанная двухэтапная модель развития андрогенной алопеции у пациентов мужского пола с учетом генетических и негенетических факторов характеризуется 81,2% и 85,1% точностью в подгруппах низкого и высокого генетического риска развития андрогенной алопеции, соответственно.
- 6. Предложенная персонализированная схема терапии андрогенной алопеции с использованием миноксидила, комплекса микроэлементов и

витаминов, обеспечивает эффективное восстановление волосяного покрова у 67 % пациентов с начальными и умеренно выраженными клиническими проявлениями данного заболевания. В случае выявления микронутриентной недостаточности проведение персонализированной коррекции дефицитов ФК и витамина Е оказывает позитивный, а использования препаратов Se негативный эффект на результат консервативной терапии начальных стадий андрогенной алопеции. Интегральным предиктором эффективности подобной консервативной терапии выступает исходное содержания Zn (>10 мкмоль/л) в плазме крови пациентов с андрогенной алопецией.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Научные статьи в изданиях, индексируемых в базах данных Web of Science и Scopus:

- 1. **Кондрахина И.Н.,** Вербенко Д.А., Затевалов А.М., Кубанов А.А., Дерябин Д.Г. Значение генетических и негенетических факторов в возникновении и развитии андрогенной алопеции у мужчин: многопараметрический анализ //Вестник РАМН. 2019. Т.74. №3. С.167-175.
- 2. **Kondrakhina I.N.,**Verbenko D.A., Zatevalov A.M., Kubanov A.A., Deryabin D.G. SNP variation in male pattern hair loss in Russians with different dihydrotestosterone levels // Meta Gene. 2019. Vol.19. P.219-224
- 3. **Kondrakhina I.N.,** Verbenko D.A., Zatevalov A.M., Gatiatulina E.R., Nikonorov A.A., Deryabin D.G., Kubanov A.A. Plasma zinc levels in males with androgenetic alopecia as possible predictors of the subsequent conservative therapys effectiveness // Diagnostics. 2020. Vol.10(5). P.336.
- 4. **Kondrakhina I.N.**, Verbenko D.A., Zatevalov A.M., Gatiatulina E.R., Nikonorov A.A., Deryabin D.G., Kubanov A.A. A Cross-sectional study of plasma trace elements and vitamins content in androgenetic alopecia in men //Biological Trace Element Research. 2021. 199(9). P. 3232-3241
- 5. **Кондрахина И.Н.,** Затевалов А.М., Гатиатулина Е.Р., Никоноров А.А., Дерябин Д.Г., Кубанов А.А. Оценка эффективности персонализированной коррекции микроэлементного и витаминного статуса при консервативной терапии начальных стадий андрогенной алопеции у мужчин // Вестник РАМН. 2021. Т.76 №6 С. 604-611

Научные статьи в рецензируемых журналах, рекомендуемых ВАК РФ для публикации результатов диссертационных исследований:

- 6. **Кондрахина И.Н.,** Мареева А.Н. Неинвазивная диагностика нерубцовых алопеций методом трихоскопии //Вестник дерматологии и венерологии. -2014. -№5. -С. 81–85.
- 7. **Кондрахина И.Н.,** Мареева А.Н. Системная терапия больных андрогенетической алопецией //Вестник дерматологии и венерологии. 2015. N01. C. 41–45.
- 9. **Кондрахина И.Н.,** Мареева А.Н., Калинина П.А., Абуладзе М.Г Андрогенный статус у пациентов с андрогенетической алопецией //Вестник

- дерматологии и венерологии. 2015. №6. С. 30–32.
- 10. Мареева А.Н., **Кондрахина И.Н.** Психоэмоциональные состояния у больных нерубцующими алопециями (гнёздной, андрогенетической) //Вестник дерматологии и венерологии. 2015. №6. С. 50-56.

Объекты интеллектуальной собственности:

- 11. **Кондрахина И.Н.,** Дерябин Д.Г., Вербенко Д.А., Кубанов А.А., Затевалов А.М. Способ прогнозирования андрогенной алопеции у мужчин. *Патент на изобретение* RU 2713374 C1 от 04.02.2020.
- 12. **Кондрахина И.Н.,** Дерябин Д.Г., Вербенко Д.А., Дубин Е.П., Затевалов А.М. Программа многопараметрического анализа генетических и негенетических факторов, определяющих возникновение и развитие андрогенной алопеции у мужчин. *Свидетельство о регистрации программы для ЭВМ* RU 2020612365 от 20.02.2020.

Материалы конференций:

- 13. **Кондрахина И.Н.** Современные аспекты обследования и лечения андрогенетической алопеции у мужчин //Тезисы научных работ XV Всероссийского съезда дерматовенерологов и косметологов г. Москва, 23–26 июня 2015 г.
- 14. **Кондрахина И.Н.,** Вербенко Д.А. Интегральный анализ влияния генетических и негенетических факторов на возникновение и развитие андрогенной алопеции у мужчин//Тезисы научных работ XIX Всероссийского съезда дерматовенерологов и косметологов г. Москва, 18–21 июня 2019 г.
- 15. **I.N. Kondrakhina,** A.A. Nikonorov Role of trace elements in androgen-dependent and androgen-independent hair loss patterns in male androgenetic alopecia. Trace Elements and Electrolytes, 2021, V. 38 N. 3, P. 151.

СПИСОК СОКРАЩЕНИЙ

BASP - basic and specific classification

FDA - Food and Drug Administration

FGF - fibroblast growth factors (фактор роста фибробластов)

HDD - Hair Diameter Diversity (разнообразие диаметра волос – анизотрихоз)

HGF - Hepatocyte Growth Factor (фактор роста гепатоцитов)

NO - монооксида азота

PARP - Poly (ADP-ribose) polymerase (поли-АДФ-рибозо-полимераза)

PDGF - Platelet-derived growth factor (тромбоцитарный фактор роста)

PDAF - Platelet-derived angios growth factor (тромбоцитарный фактор роста кровеносных сосудов)

PRP - Platelet-rich plasma (богатая тромбоцитами плазма)

ROC - receiver operating characteristic

SALT - Severity of Alopecia Tool

SNP - single nucleotide polymorphisms (однонуклеотидный полиморфизм)

TGF-β1 - transforming growth factor-beta 1 (трансформирующий фактор роста β-1)

VDR - vitamin D receptor (рецептор витамина Д)

VEGF - Vascular endothelial growth factor (сосудистый эндотелиальный фактор роста)

АА – андрогенная алопеция

АР - андрогеновый рецептор

АТФ - аденозинтрифосфат

АФК – активные формы кислорода

ГА – гиперандрогения

ГСПГ - глобулин, связывающий половые гормоны

ДГТ – дигидротестостерон

ДГЭА-С - дегидроэпиандростерон сульфат

ДНК – дезоксирибонуклеиновая кислота

ЛГ – лютеинизирующий гормон

мРНК – матричная рибонуклеиновая кислота

МЭ - микроэлементы

ОНП - однонуклеотидный полиморфизм

ПЦР – полимеразная цепная реакция

СОД - супероксиддисмутаза

ТТГ – тиреотропный гормон

Т – тестостерон

ФСГ – фолликулостимулирующий гормон

ФК – фолиевая кислота

17-ОН прогестерон – 17 - гидроксипрогестерон

 $1,25(OH)_2D$ - 1,25-дигидроксивитамин D